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Abstract. We study the phenomenon of avoided crossings of eigenvalue curves for boundary
value problems related to differential equations of Heun’s class. The eigenvalues are given
explicitly in asymptotic form taking into account power-type as well as exponentially small terms.
It is exhibited that the phenomenon of avoided crossings of eigenvalue curves show a ‘periodical’
structure in the sense that at any integer value of the additional controlling parameter an infinite
(in the sense of a large parameter) number of avoided crossings take place simultaneously. Some
relations to other phenomena of the asymptotics of exponentially small terms are discussed at
the end of the article.

1. Introduction

The first publication in which the phenomenon of avoided crossings of eigenvalue curves for
a specific equation of Heun’s class was exposed was the paper by Komarov and Slavyanov
[1]. In this paper two Coulomb centres with different chargesZ1, Z2 have been studied
under the condition of a large centre separation. It has been shown that the structure of
avoided crossings of the eigenvalue curves in this model reveals much more specific features
than in other models studied. This physical problem has been further studied intensively
and the original result has been corrected and numerically approved [2–4]. However, the
phenomenon has been explained purely on the basis of the properties of Coulomb fields
without sufficiently generalizing to other types of potentials.

In recent years several attempts have been made to make a comprehensive study of
Heun’s class of special functions—next in complexity to the hypergeometric class. Heun’s
class originates from Heun’s equation—the Fuchsian second-order linear homogeneous
equation with four singularities—by the confluence process of its singularities and the
specialization of its parameters. These attempts result in a book on Heun’s equation [5]
in which the phenomenon of avoided crossings of eigenvalue curves has been dealt with
from the viewpoint of a more general problem than the one discussed above. These studies,
however, were still not comprehensive enough because as in the earlier publications, only
Coulomb-type potentials were considered.

In this paper we go beyond Coulomb-type potentials, taking into account oscillator-type
potentials as well. This forms the basis for us to show that avoided crossings of eigenvalues
is a phenomenon for the majority of the confluent cases of Heun’s differential equation. It
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occurs when the exponent of the power-type term of the asymptotic factor in the Thomé-
type representation of the eigensolution in an integer. This phenomenon should be regarded
along with the other discontinuity effects which are typical to ‘exponential asymptotics’, as,
for example, the Stokes’ phenomenon.

The basic conjectures of our studies are the following.
• In one-dimensional models there is no single avoided crossing of only two eigenvalue

curves. If there exists one avoided crossing of curves then there is a large number of them
(in the sense of the large parameter). They occur at certain values of an additional parameter
which controls the phenomenon.

• These values of the controlling parameter constitute a periodic sequence.
The present paper cannot be regarded as the source of new or rigorous methods in

asymptotics. We use practical methods as proposed in previous publications [1, 6, 7]. We
hope that scientists developing more sophisticated and rigorous approaches like resurgence
theory and Borel summation [8, 9] will give more ‘polish’ to our presentation.

The effect of avoided crossings has been largely studied in JWKB approximations for
more general models than ours [10–12]. It has been used for qualitative and quantitative
explanations of many other observable phenomena appearing in different fields of physics
including charge transfer, instantons, propagation of waves in underwater acoustics and
tropospheric propagation of radio waves.

Without going into detail we stress that our models can be to some extent useful in these
problems. In quantum-mechanical language they comprise (i) two interacting oscillators,
(ii) two interacting Coulomb-type potentials and (iii) an interacting Coulomb-type potential
and an oscillator-type potential. It should be mentioned that the approximation in which
we treat the problem isnot semi-classical (at least in the conventional sense). This fact
implies several changes in the computational scheme. For instance, turning points arenot
the branching points of the action function but its poles; quantization conditions reduce to
residue calculations, etc.

In the first section of the article we give the major definitions of the equations of Heun’s
class. In the following three sections we study three physical models and the last section is
devoted to a general discussion of the phenomenon.

2. Heun’s differential equations

The class of special functions most studied in the literature is the hypergeometric one.
There are two reasons for this: first, many physical problems can be formulated in terms of
functions belonging to this class; and secondly many specific properties of hypergeometric
functions can be obtained in terms of explicit formulae. However, this simplicity results in
the fact that these functions are short of free parameters and are too simple to explain a lot
of phenomena we encounter in physical sciences. Moreover, all parameters in the equations
of this class are related to power-type behaviour of the functions at singularities and as
a consequence the JWKB expansions are reduced to Thomé-type solutions at the irregular
points. The other consequence is that eigenfunctions of hypergeometric type are exclusively
expressed in terms of polynomials, and eigenvalues are easily calculated in terms of the
order of these polynomials.

In contrast to the hypergeometric class, the equations of Heun’s class are characterized
by additional parameters: first, by the parameter related to the scaling of the equation
(further denoted byp), and, secondly, by the ‘accessory’ parameter (further denoted by
λ). The accessory parameter is characterized by not being related to the local behaviour of
solutions at the singularities and is usually regarded as the eigenvalue (spectral) parameter.
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As a consequence, there are solutions for equations of Heun’s class being constructed
as asymptotic series in the large parameterp. They differ from asymptotic solutions in
large values of the independent variablez. The eigensolutions are, in general, no longer
polynomials but their asymptotics inp at bounded numbers can be expressed in terms of
polynomials of the hypergeometric class.

Heun’s class originates from the following differential equation:

L(1,1,1;1)
z (a, b, c, d; s; λ)y(z) = (z(z − 1)(z − s)D2 + (c(z − 1)(z − s)

+dz(z − a) + (a + b + 1 − c − d)z(z − 1))D + (abz + λ))y(z) = 0. (1)

It is a second-order differential equation with four regular points called Heun equation in
its canonical natural form. The upper index of the operatorL is thes-rank multisymbol of
equation (1) showing that there are four singularities of the equation each characterized by
an s-rank equal to unity. The definitions of the notions ‘s-rank’ and ‘s-rank multisymbol’
can be found in [13, 15].

The generalized Riemann scheme (GRS) [14] for equation (1) reads
1 1 1 1
0 1 s ∞ ; z

0 0 0 a ; λ

1 − c 1 − d c + d − a − b b

 . (2)

The two lower rows comprise characteristic exponents at regular singularities of (1), the
locations of which are exposed in the second row. In the first row thes-ranks of the
singularities are given. The notion ‘canonical’ we used above means that, first, two of
the singularities are positioned atz = 0 andz + 1 and, secondly, one set of characteristic
exponents at the finite singularities is zero. The notion ‘natural’ means that the point at
infinity is a singularity of the equation. The relation between the Heun equation in general
form and in canonical natural form is similar to the relation between the hypergeometric
equation and the general Riemann equation. More precise definitions are given in [15].

Equation (1) does not reveal a phenomenon of avoided crossings and is therefore not
studied here. However, several other equations can be derived from it with the help of
confluence processes [13].

First comes the single confluent case of Heun’s equation (CHE)

L(1,1,2)
z (c, d; a; p; λ)y(x) = (z(z − 1)D2 + (−pz(z − 1) + c(z − 1) + dz)D

+(−paz + λ))y(z) = 0. (3)

In this equation two regular singularities of the original equation (1) atz = s and z = ∞
have coalesced resulting in an irregular singularity at infinity havings-rank 2.

Then come two equations: the biconfluent case of Heun’s equation (BHE)

L(;3)
z (c; a, p; λ)y(z) = (zD2 + (−z2 − pz + c)D + (−az + λ))y(z) = 0 (4)

originating from a confluence process of the regular point atz = 1 and the irregular point at
z = ∞ in (3) resulting in an irregular point at infinity ass-rank 3 and the double-confluent
case of Heun’s equation (DHE)

L(2;2)
z (a, c, p; λ)y(z) = (z2D2 + (−z2 + cz − p)D + (−az + λ))y(z) = 0 (5)

originating from a confluence of two regular singularities in (3) atz = 0 andz = 1 resulting
in an irregular singularity at zero ofs-rank 2.

Lastly comes the triconfluent case of Heun’s equation (THE) which arises when all
singularities of Heun’s equation coalesce into one irregular singularity at infinity having
s-rank 4:

L(;4)
z (a, p; λ)y(z) = (D2 + (−z2 − p)D + (−az + λ))y(z) = 0. (6)
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Throughout equations (3)–(6) we have used one and the same notation for all parameters
representing specific properties of its solutions. The first letters of the alphabeta, b, c . . .

denote the parameters which relate to the power-type behaviour of solutions at the
singularities,p denotes the parameter which characterizes the chosen scale of the dependent
variable; moreover, it plays the role of a large parameter.λ represents the eigenvalue
parameter of the corresponding boundary value problem. We hope that this practice is not
a source for confusion.

Equations (3)–(6) are distinguished by theirs-rank multisymbols which respectively are
{1, 1; 2}, {1; 3}, {2; 2}, {; 4}. As already mentioned above thes-rank multisymbol is used as
the upper index of the corresponding operator. The semi-colon in these symbols separates
the s-rank of the singularity at infinity from the finite ones.

Equations (1), (3)–(6) can be arranged into the following confluence diagram:

L(1,1,1;1) → L(1,1;2) → L(1;3) → L(;4) → L(2:2).

Besides the equations which are written above there are several others having so-called
ramified singularities at infinity [13, 15]. The ramified singularities are characterized by
a half-integers-rank. It is important that these equations do not possess the parametera

occurring in (3), (5)–(6) which—as we shall see later—is controlling the phenomenon of
avoided crossings. As a result, the eigenvalue curves of these equations do not show the
effect of avoided crossings. Therefore, they are beyond the scope of this article. Moreover,
the eigenvalue curves of the DHE also do not reveal the phenomenon of avoided crossings.

The following lemma clarifies the role of the parametera:

Lemma 1.For every equation (3)–(4), (6) these exists a solutiony(p, z) which has the
following asymptotic expansion:

y(p, z) = exp(Tn(z))z
−a

∞∑
k=0

gkz
−k (7)

valid within a Stokes’ sector at infinity and whereTn(z) is a polynomial function.

The proof follows from the explicit substitution of (7) into the corresponding equation.
The canonical forms of equations (3)–(6) means that it is not convenient to treat them

asymptotically and to interpret them physically. Therefore, in the following sections we
transform the equations to their normal (e.g. Schrödinger-type) form. This form has more in
common with conventional treatments of second-order equations since the physical notions
of the potential and the energy can be used. In these notions the avoided crossings of the
eigenvalue curves for the THE appear as a result of the interaction of eigenstates belonging
to two oscillator-type potential wells. In the case of BHE avoided crossings appear as a
result of the interaction of states in a Coulomb-type potential well and in an oscillator-type
potential well. In the case of CHE the states in two Coulomb-type potential wells interact.

3. Avoided crossings for THE

We shall start with the triconfluent case of Heun’s equation which possesses fewer
parameters than the other equations. Hence, the phenomenon of avoided crossings is
expressed in the simplest way (similar to Airy’s equation which is the simplest equation
revealing Stokes’ phenomenon). The substitution

y(z) = G(z)w(z) = exp(z3/6 + pz)w(z) (8)
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transforms equation (6) to its normal (or Schrödinger) form characterized by the lack of the
term with the first derivative:

M(;4)
z w(z) = (D2 + (λ − (a − 1)z − (z2 + p)2/4))w(z) = 0 (9)

whereM(;4) = G−1L(;4)G. For large values ofp there are two different types of potentials
V (z):

V (z) = (z2 + p)2/4 + (a − 1)z

depending on the sign ofp: at positive values ofp we have a single potential well at
zero while at negative values ofp we have two potential wells located in the vicinities of
z = √−p and z = −√−p. Only the latter case is interesting for our purposes and it is
studied below. The substitutions

p 7→ −p, p > 0 z 7→ √
pz z 7→ √

pλ a − 1 7→ b p3/2 7→ p (10)

lead us to an equation with a large parameterp and two pairs of close turning points in the
vicinities of z = ±1:

M̃(;4)
z w(z) = (D2 + (p(λ − bz) − p2(z2 − 1)2/4))w(z) = 0. (11)

Each of these pairs can be regarded as a second-order turning point or as a cluster of turning
points as well.

The comprehensive study of asymptotic solutions of equations with two close turning
points has been proposed by one of the authors and can be found in [7]. The main technical
tool is the transformation of the independent variable in terms of formal asymptotic series
changing the equation studied to a Weber equation. In the case of equation (1), it is needed
in addition to match the solutions obtained in different potential wells.

On the qualitative level three different possibilities should be distinguished. In the
first case eigensolutions are concentrated in the right potential well and eigenvalues—up
to exponentially small terms—are determined from the quantization condition for the right
well. Exponentially small corrections to the eigenvalues are found from matching conditions
with the exponentially small representation of the eigensolutions in the left well. The second
case is equivalent to the first with the only difference being that the roles of left and right
potential wells are interchanged. The third case which is the most interesting for our study
is the case when:

(i) the maximal values of the eigensolutions in the left and right potential wells are of
the same order of magnitude (in terms of the large parameter),

(ii) the quantization conditions are fulfilled in both potential wells simultaneously,
(iii) there exist two eigenvalues with exponentially small splitting. For the upper of

these eigenvalues the corresponding eigensolution has an additional zero in the sub-barrier
region.

This latter case is the most interesting for us.
Later on, we denote quantities related to the right potential well by a superscript ‘+’

and to the left one by ‘−’.
As a first step, power series inp (as a large parameter) for the eigenvaluesλ are

calculated with the help of the quantization condition at the right well. This condition was
first formulated by Wentzel [16] and afterwards rigorously proved in [17]. Although proved
under an additional supposition of a single well this quantization condition enables us to
obtain the correct result by neglecting the exponentially small terms in the above-mentioned
cases (i) and (iii).
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The eigensolutions concentrated in the right potential well (neglected exponentially small
terms) are sought in the form

w+(p, z) = (u+(p, z))1/2 exp

(
− p

∫
(u+(p, z))−1dz

)
(12)

valid for a complete complex neighbourhood of the pointz = 1. It reflects the fact that
this method of asymptotics for the eigenfunctions does not reveal the Stokes’ phenomenon.
Moreover, it imposes that successive approximations for the functionu+(p, z) can have only
poles (not branching points) atz = 1. The cancelling of the branching points originating
from the multiplier(u+(p, z))1/2 will be discussed below. The use of the functionu+(z)

instead of its reciprocal leads to a simpler presentation of the results to our computations.
The substitution of (12) into (11) results in the following equation foru+(z):

p2(1 − (z2 − 1)2u2/4) + p(λ − bz)u2 + (u′′u − u′2/2)/2 = 0. (13)

The condition for the functionw(z) to be single-valued imposes the following
quantization condition:

−p Resz=1(u
+(p, z))−1 = n+ + 1

2 (14)

where, once again, we neglect exponentially small terms. Here,n+ is an integer(n+ =
0, 1, . . .) which is equal to the number of zeros of the eigensolutionw+(p, z) at the right
well and the term1

2 is needed for the sake of cancelling the branching behaviour of the
multiplier (u+(p, z))1/2 in (12).

If the eigensolution is exponentially small at the right well the relation between the right-
hand side and the left-hand side of (14) still holds in the conventional sense of asymptotics
but n+ is no longer an integer. In the latter casen+ will be substituted forν+ below.

We expandu+(p, z) andλ+ in a formal asymptotic series of the form

u+(z, p) =
∞∑

k=0

uk(z)p
−k (15)

λ+(p) =
∞∑

k=0

λkp
−k. (16)

Successive terms in expansions (15), (16) are obtained recursively by equating terms of the
same order ofp in equations (13), (14). We explicitly mention that in order to obtainλk

it is sufficient to knowk terms of the Taylor expansion foruj (z), j = 0, . . . , k − 1 in the
vicinity of z = 1.

The first three terms of expansion (15) are

u0 = 2

z2 − 1
u1 = (λ0 − bz)u3

0/2

u2 = u0

2
(λ1u

2
0 + 3

4(λ0 − bz)2u4
0 + 1

2(u′′
0u0 − 1

2u′2
0 )).

(17)

The corresponding terms of the expansion for the eigenvaluesλ+ are

λ+ = λ+(n+, b) = (2n+ + 1) + b

− 1

p

[
3

2
((2n+ + 1)2 + b(2n+ + 1)) + b2

4
+ 1

8

]
+ O(p−2). (18)

There is no need to recompute the functionu−(p, z) and the eigenvalueλ− at the left
well, namely at the pointz = −1. If we make the substitution

z 7→ −z b 7→ −b (19)
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equation (5) stays unchanged. Thus, there is another set of eigenvalues related to the left
potential well which can be obtained with the help of (18), (19):

λ− = λ+(n−, −b) = (2n− + 1) − b

− 1

p

[
3

2
((2n− + 1)2 − b(2n− + 1)) + b2

4
+ 1

8

]
+ O(p−2). (20)

Here, the integersn− correspond to the number of zeros of the eigensolutionw−(p, z) at
the left potential well.

If we try to draw the curves of the eigenvalues on theb, λ-plain we would immediately
find that there are crossings of these curves (straight lines in the first approximation) at
the points with coordinates(b = n− − n+, λ = n+ + n− + 1) (the λ coordinate in the
first approximation). However, it is well known that there are no degenerate eigenvalues
for self-adjoint boundary value problems of second-order differential equations. Hence, the
contradiction should be settled by taking into account exponentially small terms.

Compared with (12), we now seek the solution of equation (1) in a more sophisticated
form:

w(z) = [(ξ+(p, z))′]−1/2Dν+(
√

pξ+(p, z)) (21)

whereDν(t) are parabolic cylinder functions with

ξ+(p, z) =
∞∑

k=0

ξ+
k p−k (22)

and

ν+ = n+ + δ+. (23)

We will see later that this form of the solution includes two exponents in the sub-barrier
region.

For our goals we need two terms of the asymptotic expansion in the large parameterp of
ξ+(p, z) or as is more convenient for further computations, of(ξ+(p, z))2. The following
holds:

((ξ+
0 )2)′ = 2(z2 − 1) (ξ+

0 ξ+
1 )′ = 2(z2 − 1)−1[(ν+

0 + 1/2)ξ ′2
0 − λ+

0 + bz] (24)

with the solution

(ξ+)2 = 2

(
z3

3
− z

)
+ 4

3
+ 1

p
[(2ν+

0 + 1)(2 ln(z + 1) + ln(z + 2)) + 2b ln(z + 2)]

+O(p−2). (25)

The following asymptotic formula forDν(t), t = √
pξ+ including two exponents is valid

at large negative values oft (see [7]):

Dν+(
√

pξ+) = cos(πν+) exp(−p(ξ+)2/4)(−√
pξ+)ν

+
[1 + O(p−1)]

+
√

2π

0(−ν+)
exp(p(ξ+)2/4)(−√

pξ+)−ν+−1[1 + O(p−1)]. (26)

This formula lies beyond Poincaré’s definition of an asymptotic expansion but has
several reasonable explanations in modern exponential asymptotics (optimal asymptotic
approximation for a large but fixed parameter [18], resurgence theory [9], variational best
approximation [19] etc).
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Figure 1.

As a result we obtain for the solutionw+(p, z) of (5) in the sub-barrier region:

w+(p, z) = cos(πν+)e− p

6 (z−1)2(z+2)

(√
2p

3

)ν+
(z − 1)ν

+

(z + 1)ν
++b+1

[1 + O(p−1]

+
√

2π

0(−ν+)
e

p

6 (z−1)2(z+2)

(√
2p

3

)−ν+−1
(z + 1)ν

++b

(z − 1)ν
++1

[1 + O(p−1)]. (27)

The same solution constructed at the left well and for that sake denoted byw−(p, z) is

w−(p, z) = cos(πν−)e− p

6 (z−1)2(2−z)

(√
2p

3

)ν−
(z + 1)ν

−

(z − 1)ν
−−b+1

[1 + O(p−1)]

+
√

2π

0(−ν−)
e

p

6 (z−1)2(2−z)

(√
2p

3

)ν−
(z − 1)ν

−−b

(z + 1)ν
−+1

[1 + O(p−1)]. (28)

Matching the solutionsw+ andw− we first get the connection formula forν+ andν−:

ν+ − ν− = −b (29)

as a necessary condition. Now the three different behaviours of eigenvalues which have
been discussed above may be considered in connection with (29) and the quantization
conditions at both wells. Suppose thatb is not an integer. Then eitherν+ = n+ + δ+ and
the eigenvaluesλ are obtained from the quantization condition for the right well (18) or
ν− = n− + δ− and the eigenvaluesλ are obtained from the quantization condition for the
left well (20). It is necessary to mention here that the connection formula (29) is compatible
with the above-mentioned symmetry property for the eigenvaluesλ+ andλ−.

The exponentially small correctionsδ+, δ− are easily found from the condition that the
Wronskian of the solutionsw+, w− should be zero:

W(w+(p, z), w−(p, z)) = 0. (30)

Formally in the case only one of the0-functions (27), (28) has a value near its poles.
Another possibility appears when the parameterb is an integer. Then the quantization

conditions independently hold at both potential wells. As a result we obtain

ν+ = n+ ± δ ν− = n− ± δ. (31)



Structure of avoided crossings 681

The exponentially small value ofδ is obtained from equation (30) which turns out to be a
quadratic equation at small values ofδ. After a simplification it takes the form

δ2 =
e− 4p

3

(
2p

3

)(n−+n++1)

2π(n−)!(n+)!
[1 + O(p−1)]. (32)

Note that this time both0-functions in (27), (28) have values near their poles.
The splitting of two eigenvalues1λ at the avoided crossing points is given by

1λ = 4|δ| =
4e− 2p

3

(
2p

3

)(n−+n++1)/2

[2π(n−)!(n+)!] 1/2
[1 + O(p−1)]. (33)

Roughly speaking, the values ofδ+, δ− are of the order of magnitude ofδ2 at the points of
avoided crossings but there is still a slight difference of order in the main term of explicit
asymptotics.

4. Avoided crossings for BHE

In the case of the biconfluent equation (4) it is convenient to perform the transformation
to the Schr̈odinger from in two steps. First, we transform (4) to the self-adjoint form by
means of a substitution similar to (8):

y(z) 7→ w(z) y(z) = G(z)w(z) = exp(z2/4 + pz/2 + (1 − c) ln z/2)w(z) (34)

M(1;3)
z w(z) =

(
D(zD) +

[
λ + pc

2
−

(
a − 1 + c

2

)
z − z(z + p)2/4 − (1 − c2

4z

])
w(z) = 0

(35)

whereM(1;3) = G−1L(1;3)G. Once again we shall study the case when the large parameter
p is negative. For this case we have a typical Coulomb-type behaviour at zero and an
oscillator-type well in the vacinity of the pointz = p. After carrying our the following
substitutions:

p 7→ −p, p > 0 z 7→ pz λ + pc

2
7→ pλ

a − 1 + c

2
7→ b w(z) 7→ z−1/2w(z)

(36)

equation (35) transforms to

M̃(1;3)
z w(z) =

(
D2 +

[
p

λ − bz

z
− p2(z − 1)2/4 − 1 − (1 − c)2

4z2

])
w(z) = 0. (37)

Equation (37) will be studied in the same way as equation (11) but this time we will denote
by the sign ‘+’ our constructions in the vicinity of the pointz = 1 (i.e. related to the
oscillator-type potential well) and by the sign ‘−’ the constructions for the Coulomb-type
singularity at zero.

By the use of the representation (11) and the quantization condition (12) we obtain as
the first terms of an asymptotic power-type expansion foru+(p, z)

u0 = 2

z − 1
u1 = (λ0 − bz)

u3
0

2z

u2 = u0

2

[
λ1

u2
0

z
+ 3

8
(λ0 − bz)2 u4

0

z2
+ (1 − (1 − c)2)

u2
0

4z2
+ 5

16
u4

0

]
.

(38)
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The corresponding terms of the expansion for the eigenvaluesλ+ are

λ+ = λ+(n+, b) = n+ + 1
2 + b

− 1

p

[
3

2
((n+ + 1

2)2 + 2b(n+ + 1
2)) + b2

2
+ 1

4c(c − 2)

]
+ O(p−2). (39)

Heren+ is a constant indicating the number of zeros of the eigensolutions at the potential
well.

Now it is necessary to construct the same terms of the expansions in the vicinity of the
Coulomb-type potential well at zero. For this sake in the expressions foruk(z) we need to
change the sign to the opposite foru0(z). In order to calculate the successive terms ofλ−

another quantization condition should be used instead of (14) which takes into account not
only zeros of the eigensolutions but also a possible singularity atz = 0:

−p Resz=0(u
−(p, z))−1 = n− + c

2
. (40)

Later on, we consider the parameterc being positive [7]. Once again we neglect
exponentially small terms. In (40)n− is an integer(n− = 0, 1, . . .) which is equal to the
number of zeros of the eigensolutionsw−(p, z) at the left Coulomb-type well. Calculations
of the residue give the asymptotic expression forλ−:

λ− = n− + c

2
= 1

p

[
3

4

((
n+ + c

2

)2
− b

(
n− + c

2

))
+ c(c − 2)

4

]
+ O(p−2) (41)

wheren− is an integer indicating the number of zeros of the eigensolutions at the Coulomb-
type potential. Unfortunately, there is no simple relation connectingλ− andλ+ on the basis
of the symmetry properties of the equation.

The study of the solutions at the right well when two exponents are kept is equivalent
to the one given in the previous section. So, we only give the formulae corresponding to
(24), (25):

((ξ+
0 )2)′ = 2(z − 1) (ξ+

0 ξ+
1 )′ = (2ν+ + 2b + 1)

z
(42)

which gives

(ξ+)2 = z(z − 2) + 1 + 1

p
(2ν+ + 2b + 1) ln z + O(p−2). (43)

At the Coulomb-type singularity the eigensolutionw−(p, z) is sought in the form

w−(p, z) = (ξ−′
(p, z))−1/2Mκ−,m(pξ−(p, z)) (44)

whereMκ,m(t) is the bounded solution at zero of the Whittaker equation withm = (c−1)/2
and κ− should be found from matching conditions. The first terms of the asymptotic
expansion forξ− are

ξ−(p, z) = z(1 − z

2
) + 1

p

[
2b − 2κ−

1 − z
− κ−

(1 − z/2)

]
+ O(p−2). (45)

In order to match the asymptotic expansions the formula

Mκ,m(pξ) = cos(π(m − κ + 1
2))

0(m − κ + 1
2)

e−pξ/2(pξ)κ [1 + O(p−1]

+ 1

0(m + κ + 1
2)

epξ/2(pξ)−κ [1 + O(p−1] (46)
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Figure 2.

is needed where both exponents—dominant and recessive— are preserved. Note that in (46)
we have chosen a non-standard normalization of the functionMκ,m(t). After substitutions
of (45), (46) in (44) we obtain the asymptotic expression forw−(p, z) in the sub-barrier
region in the form

w−(p, z) = cos(π(m − κ− + 1
2))

0(m − κ− + 1
2)

e−p z
2 (1− z

2 )(1 − z)b−1/2

(
pz

1 − z

)κ−

[1 + O(p−1)]

+ 1

0(m + κ− + 1
2)

ep z
2 (1− z

2 )(1 − z)−b−1/2

(
pz

1 − z

)−κ−

[1 + O(p−1)]. (47)

The other asymptotic expression for the functionw+(p, z) reads

w+(p, z) = cos(πν+)ep z
2(1− z

2)− p

4 zν++b+1/2(
√

p(1 − z))ν
+
[1 + O(p−1)]

+
√

2π

0(−ν+)
e−p z

2 (1− z
2 )+ p

4 z−(ν++b+1/2)(
√

p(1 − z))−ν+−1[1 + O(p−1)]. (48)

As a necessary condition for matching (47) and (48) we have

ν+ + b + 1/2 = κ−. (49)

As in the previous case of the THE the use of the eigenvalue dispersion equation (30)
gives rise to two sequences of eigenvalues. One sequence relates to the eigensolutions
concentrated atz = 1. The other sequence relates to the eigensolutions concentrated
at z = 1. The asymptotic formulae for these sequences (neglecting exponentially small
corrections) have already been obtained by simpler considerations in (39) and (41). Avoided
crossings of eigenvalue curves in the{λ, b}-plane occur ifb + (1 − c)/2 is an integer. It
is more natural to come back to the original parameters of the BHE and to rewrite this
condition as

c − a = n+ − n−. (50)

The splitting of the eigenvalue curves at this point is obtained from (30) as

δ2 = e− p

2 p(2n−+n++c+1/2)

√
2π0(c)0(n− + c)(n−)!(n+)!

[1 + O(p−1)] (51)

with

ν+ = n+ ± δ κ− = n− + c

2
± δ. (52)
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5. Avoided crossings for CHE

As the study of this case has already been published in [5] here we consider it only for
the sake of completeness and simply give the initial setting of the problem and the final
results for the splittings of the eigenvalue curves at avoided crossings. All technical details
of calculations are the same as in the previous sections.

As a starting point for constructing the asymptotics we use the normal form of the CHE
in which—for the sake of symmetry—the regular singularities are positioned atz = ±1 and
the parametersc, d in (3) are substituted form, s according toc = m+s+1, d = m−s+1:

v
′′
(z) +

(
−p2 + 2p

λ − bz

1 − z2
− m2 + s2 + 2msz − 1

(1 − z2)2

)
v(z) = 0. (53)

The potential in (53) can be considered as a sum of two one-dimensional Coulomb potentials.
Therefore, forp 7→ ∞ the spectrum of the eigenvalues resembles that of two Coulomb
spectra.

The eigenvalues related to the eigensolutions concentrated in the left well are presented
by the formula

λ−(p, χ, b) = (2χ − b) + 1

2p
(−2χ(χ − b) + 1

2(m2 + s2 − 1))

+ 1

(2p)2
(−χ(χ − b)2 + χ2(χ − b) − 1

4(χ − b)(1 − (m − s)2)

− 1
4χ(1 − (m + s)2)

+ 1

8p3
(−3χ2(χ − b)2 − χ(χ − b)3 − χ3(χ − b) − χ(χ − b)

− 1
2(χ − b)2(1 − (m − s)2) − 1

2χ2(1 − (m + s)2)

−χ(χ − b)(1 − (m2 − s2)) − 1
16(1 − (m − s)2)(1 − (m + s)2))

+O

(
1

p4

)
(54)

where

χ = κ−. (55)

The asymptotic formula for the eigenvaluesλ+(p, χ,−b) constructed in the right Coulomb-
type well is obtained by substitutions

χ 7→ κ+ b 7→ −b m − s 7→ m + s m + s 7→ m − s

in (55). The relation betweenκ− and κ+ that can be regarded as a necessary matching
condition reads

κ+ = κ− − b. (56)

In order to get an equation for the parameterκ− we calculate the Wronskian of the
asymptotic representations of the eigensolutions in the sub-barrier region and put to zero.
The corresponding result reads

1

π
tanπ

(
1

2
+ m + s

2
− κ+

)
1

π
tanπ

(
1

2
+ m − s

2
− κ−

)
= e−4p(4p)2(κ+κ−)

0( 1
2 + m+s

2 + κ+)0( 1
2 + m−s

2 + κ−)0( 1
2 + κ+ − m+s

2 )0( 1
2 + κ− − m−s

2 )(1 + O(p−1))
.

(57)
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The system of two coupled equations (56), (57) can be solved by successive approximations.
In general, it leads to two sets of solutions. If we neglect exponentially small terms they
are either

κ− = n− + m − s

2
= 1

2
(58)

or

k+ = n+ + m + s

2
+ 1

2
. (59)

Heren−, n+ are integers indicating the eigenvalues of these two sets. The first set is related
to the case when the eigenfunctions are concentrated near the left end of the interval ]−1, 1[.
The second set is related to the case when the eigenfunctions are concentrated near the right
end.

Avoided crossings of eigenvalue curved in the{λ, b}-plane occur under the condition

b = n− − n+ − s. (60)

The splitting between the eigenvalue curves can be calculated by the formula

1λ = 2(4p)n
++n−+m+1e−2p

[n+!n−!(n+ + m + s)!(n− + m − s)!] 1/2
(1 + O(p−1)). (61)

The asymptotics of the eigensolutions at the points of avoided crossings can be taken as a
sum and a difference of the ‘local’ asymptotic expansions.

6. Discussion

In the following we give some speculations about the origin and possible relations of the
phenomenon of avoided crossings to Stokes’ phenomenon. We start with confluent cases
of hypergeometric equations having unramified singularities at infinity. There are two
such equations, namely the confluent hypergeometric equation and the Weber equation for
parabolic cylinder functions (note that the famous Airy equation is not among our list since
it has a ramified singularity at infinity).

Two formal asymptotic solutions of these equation at the irregular point at infinity are
presented in the form

ym(z) = exp(Pm(z))z−αmvm(z) m = 1, 2 (62)

where Pm(z) are polynomials of the first or second order, respectively, andvm(z) are
formal asymptotic series in powers ofz−1. On the radial rays where the imaginary part of
Pm becomes zero the Stokes’ phenomenon occurs. This means that the two-dimensional
vector which represents the actual solution of the equation in terms of the formal asymptotic
solutions is multiplied by a matrix. In a proper basis the matrix is triangular. Then it is
called the Stokes’ matrix. The non-diagonal element of this matrix is called the Stokes’
multiplier. This effect has to be considered in the space of two real variables—one large
parameterr, the modulus of the independent variable and the other parameterϕ, the angle
from the above-mentioned ray. On a formal level in this space the Stokes’ phenomenon
is a discontinuity phenomenon depending onϕ. Further structures can be imported to this
space for numerical needs. Instead of considering the infinite number of terms of this
expansion only a finite number of terms is taken into account. The number of these terms
increases whenr becomes larger. It leads to an additional non-holomorphic multiplier
in the asymptotic expression. This procedure is known as Berry’s smoothing of Stokes’
phenomenon [20, 21].
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All these speculations are valid unlessa = α1 − α2 is an integer. In this latter case
the Stokes’ matrix becomes diagonal and the Stokes’ phenomenon disappears. One of the
solutions for this case is the eigensolution. The effect of the disappearing of the Stokes’
constant as a function of the parametera is continuous. It is senseless to investigate the
behaviour of the eigenvalues with respect to the parametera since the eigenvalue is equal
to integera.

Let us discuss Heun’s equations now. Formal asymptotic solutions of equations with
unramified singularities (which we have studied above) can be represented once again
according to lemma 1 in a form similar to (62). The number of free parameters is
much larger here. The eigenvalue parameter and the parametera are different. Besides
asymptotics in large values of the argument it is possible to study asymptotics in large
values of the parameterp. Therefore, the space of real parameters is four-dimensional and
one can study other discontinuity phenomena in this space. We think that the phenomenon
of avoided crossings of eigenvaluesλ in the space{r, a} has many common features with
Stokes’ phenomenon in the space{r, ϕ}: both are discontinuity phenomena when different
parts of asymptotics (in the sense of exponential asymptotics) change; both are periodic
in the second parameter; both appear to be quite general. For this reason further study of
the phenomenon of avoided crossings should include estimates of the large terms of the
asymptotic expansions inp, appearing in the smoothing function for large but fixedp,
resurgence properties in the terms of the transformation to a new space from the space of
the parameters{p, a}.
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